
String attractors,
or how to capture text combinatorics

France Gheeraert

Octobre 14, 2025



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

abracadabra banana

(0,0,a)(0,0,b)(0,0,r)(1,1,c)(1,1,d)(1,4, )(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

abracadabra banana

(0,0,a)(0,0,b)(0,0,r)(1,1,c)(1,1,d)(1,4, )(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.bracadabra banana
(0,0,a)

(0,0,b)(0,0,r)(1,1,c)(1,1,d)(1,4, )(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.b.racadabra banana
(0,0,a)(0,0,b)

(0,0,r)(1,1,c)(1,1,d)(1,4, )(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.b.r.acadabra banana
(0,0,a)(0,0,b)(0,0,r)

(1,1,c)(1,1,d)(1,4, )(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.b.r.ac.adabra banana
(0,0,a)(0,0,b)(0,0,r)(1,1,c)

(1,1,d)(1,4, )(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.b.r.ac.ad.abra banana
(0,0,a)(0,0,b)(0,0,r)(1,1,c)(1,1,d)

(1,4, )(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.b.r.ac.ad.abra .banana
(0,0,a)(0,0,b)(0,0,r)(1,1,c)(1,1,d)(1,4, )

(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.b.r.ac.ad.abra .ba.nana
(0,0,a)(0,0,b)(0,0,r)(1,1,c)(1,1,d)(1,4, )(2,1,a)

(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.b.r.ac.ad.abra .ba.n.ana
(0,0,a)(0,0,b)(0,0,r)(1,1,c)(1,1,d)(1,4, )(2,1,a)(0,0,n)

(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Lempel-Ziv 77

• Loseless text compression algorithm
• Many variants used in ZIP, PNG, GIF, etc.

Example:

a.b.r.ac.ad.abra .ba.n.ana
(0,0,a)(0,0,b)(0,0,r)(1,1,c)(1,1,d)(1,4, )(2,1,a)(0,0,n)(14,3,EOF)

France Gheeraert String attractors GREYC - Sém. Algo 1 / 25



Burrows-Wheeler Transform

• Another loseless text compression algorithm
• More efficient on shorter text

Example:
b a n a n a
a n a n a b
n a n a b a
a n a b a n
n a b a n a
a b a n a n

a b a n a n
a n a b a n
a n a n a b
b a n a n a
n a b a n a
n a n a b a

banana ⇝ nnbaaa ⇝ (n,2)(b,1)(a,3)

Can we measure the repetitiveness of a text?

France Gheeraert String attractors GREYC - Sém. Algo 2 / 25



Burrows-Wheeler Transform

• Another loseless text compression algorithm
• More efficient on shorter text

Example:
b a n a n a

a n a n a b
n a n a b a
a n a b a n
n a b a n a
a b a n a n

a b a n a n
a n a b a n
a n a n a b
b a n a n a
n a b a n a
n a n a b a

banana ⇝ nnbaaa ⇝ (n,2)(b,1)(a,3)

Can we measure the repetitiveness of a text?

France Gheeraert String attractors GREYC - Sém. Algo 2 / 25



Burrows-Wheeler Transform

• Another loseless text compression algorithm
• More efficient on shorter text

Example:
b a n a n a
a n a n a b

n a n a b a
a n a b a n
n a b a n a
a b a n a n

a b a n a n
a n a b a n
a n a n a b
b a n a n a
n a b a n a
n a n a b a

banana ⇝ nnbaaa ⇝ (n,2)(b,1)(a,3)

Can we measure the repetitiveness of a text?

France Gheeraert String attractors GREYC - Sém. Algo 2 / 25



Burrows-Wheeler Transform

• Another loseless text compression algorithm
• More efficient on shorter text

Example:
b a n a n a
a n a n a b
n a n a b a
a n a b a n
n a b a n a
a b a n a n

a b a n a n
a n a b a n
a n a n a b
b a n a n a
n a b a n a
n a n a b a

banana ⇝ nnbaaa ⇝ (n,2)(b,1)(a,3)

Can we measure the repetitiveness of a text?

France Gheeraert String attractors GREYC - Sém. Algo 2 / 25



Burrows-Wheeler Transform

• Another loseless text compression algorithm
• More efficient on shorter text

Example:
b a n a n a
a n a n a b
n a n a b a
a n a b a n
n a b a n a
a b a n a n

a b a n a n
a n a b a n
a n a n a b
b a n a n a
n a b a n a
n a n a b a

banana ⇝ nnbaaa ⇝ (n,2)(b,1)(a,3)

Can we measure the repetitiveness of a text?

France Gheeraert String attractors GREYC - Sém. Algo 2 / 25



Burrows-Wheeler Transform

• Another loseless text compression algorithm
• More efficient on shorter text

Example:
b a n a n a
a n a n a b
n a n a b a
a n a b a n
n a b a n a
a b a n a n

a b a n a n
a n a b a n
a n a n a b
b a n a n a
n a b a n a
n a n a b a

banana ⇝ nnbaaa

⇝ (n,2)(b,1)(a,3)

Can we measure the repetitiveness of a text?

France Gheeraert String attractors GREYC - Sém. Algo 2 / 25



Burrows-Wheeler Transform

• Another loseless text compression algorithm
• More efficient on shorter text

Example:
b a n a n a
a n a n a b
n a n a b a
a n a b a n
n a b a n a
a b a n a n

a b a n a n
a n a b a n
a n a n a b
b a n a n a
n a b a n a
n a n a b a

banana ⇝ nnbaaa ⇝ (n,2)(b,1)(a,3)

Can we measure the repetitiveness of a text?

France Gheeraert String attractors GREYC - Sém. Algo 2 / 25



Burrows-Wheeler Transform

• Another loseless text compression algorithm
• More efficient on shorter text

Example:
b a n a n a
a n a n a b
n a n a b a
a n a b a n
n a b a n a
a b a n a n

a b a n a n
a n a b a n
a n a n a b
b a n a n a
n a b a n a
n a n a b a

banana ⇝ nnbaaa ⇝ (n,2)(b,1)(a,3)

Can we measure the repetitiveness of a text?

France Gheeraert String attractors GREYC - Sém. Algo 2 / 25



String attractors

Definition (Kempa & Prezza 2017)
A string attractor of a text of length n is a set Γ ⊆ {1, . . . , n} of
positions such that every substring (factor) of the text has an
occurrence crossing a position in Γ.

Examples:
banana

Γ = {1, 3, 6}
01100101001

Γ = {3, 4, 8, 11}

Definition
γ∗(t) = minimal size of a string attractor of t.

France Gheeraert String attractors GREYC - Sém. Algo 3 / 25



String attractors

Definition (Kempa & Prezza 2017)
A string attractor of a text of length n is a set Γ ⊆ {1, . . . , n} of
positions such that every substring (factor) of the text has an
occurrence crossing a position in Γ.

Examples:
banana

Γ = {1, 3, 6}

01100101001
Γ = {3, 4, 8, 11}

Definition
γ∗(t) = minimal size of a string attractor of t.

France Gheeraert String attractors GREYC - Sém. Algo 3 / 25



String attractors

Definition (Kempa & Prezza 2017)
A string attractor of a text of length n is a set Γ ⊆ {1, . . . , n} of
positions such that every substring (factor) of the text has an
occurrence crossing a position in Γ.

Examples:
banana

Γ = {1, 3, 6}
01100101001

Γ = {3, 4, 8, 11}

Definition
γ∗(t) = minimal size of a string attractor of t.

France Gheeraert String attractors GREYC - Sém. Algo 3 / 25



String attractors

Definition (Kempa & Prezza 2017)
A string attractor of a text of length n is a set Γ ⊆ {1, . . . , n} of
positions such that every substring (factor) of the text has an
occurrence crossing a position in Γ.

Examples:
banana

Γ = {1, 3, 6}
01100101001

Γ = {3, 4, 8, 11}

Definition
γ∗(t) = minimal size of a string attractor of t.

France Gheeraert String attractors GREYC - Sém. Algo 3 / 25



Link with compression algorithms

a.b.r.ac.ad.abra .ba.n.ana

⇝ abracadabra banana

Proposition (Kempa & Prezza)
If

• lz(t) is the number of phrases in the LZ77 compression of t,

• bwt(t) is the number of letter runs in the BWT of t,

then
1 γ∗(t) ≤ lz(t),
2 γ∗(t) ≤ bwt(t),
3 γ∗(t) also gives upper bounds on lz(t) and bwt(t).

France Gheeraert String attractors GREYC - Sém. Algo 4 / 25



Link with compression algorithms

a.b.r.ac.ad.abra .ba.n.ana ⇝ abracadabra banana

Proposition (Kempa & Prezza)
If

• lz(t) is the number of phrases in the LZ77 compression of t,

• bwt(t) is the number of letter runs in the BWT of t,

then
1 γ∗(t) ≤ lz(t),
2 γ∗(t) ≤ bwt(t),
3 γ∗(t) also gives upper bounds on lz(t) and bwt(t).

France Gheeraert String attractors GREYC - Sém. Algo 4 / 25



Link with compression algorithms

a.b.r.ac.ad.abra .ba.n.ana ⇝ abracadabra banana

Proposition (Kempa & Prezza)
If

• lz(t) is the number of phrases in the LZ77 compression of t,

• bwt(t) is the number of letter runs in the BWT of t,

then
1 γ∗(t) ≤ lz(t),

2 γ∗(t) ≤ bwt(t),
3 γ∗(t) also gives upper bounds on lz(t) and bwt(t).

France Gheeraert String attractors GREYC - Sém. Algo 4 / 25



Link with compression algorithms

a.b.r.ac.ad.abra .ba.n.ana ⇝ abracadabra banana

Proposition (Kempa & Prezza)
If

• lz(t) is the number of phrases in the LZ77 compression of t,
• bwt(t) is the number of letter runs in the BWT of t,

then
1 γ∗(t) ≤ lz(t),
2 γ∗(t) ≤ bwt(t),

3 γ∗(t) also gives upper bounds on lz(t) and bwt(t).

France Gheeraert String attractors GREYC - Sém. Algo 4 / 25



Link with compression algorithms

a.b.r.ac.ad.abra .ba.n.ana ⇝ abracadabra banana

Proposition (Kempa & Prezza)
If

• lz(t) is the number of phrases in the LZ77 compression of t,
• bwt(t) is the number of letter runs in the BWT of t,

then
1 γ∗(t) ≤ lz(t),
2 γ∗(t) ≤ bwt(t),
3 γ∗(t) also gives upper bounds on lz(t) and bwt(t).

France Gheeraert String attractors GREYC - Sém. Algo 4 / 25



Complexity

Proposition (Kempa & Prezza)
Let k ≥ 3 and n ∈ N.
Deciding whether a given text admits a k-attractor of size at most
n is NP-complete.

k-attractor : attractor that “catches” all factors of length ≤ k

Can we use combinatorial ideas to find optimal attractors for
particular examples?

France Gheeraert String attractors GREYC - Sém. Algo 5 / 25



Complexity

Proposition (Kempa & Prezza)
Let k ≥ 3 and n ∈ N.
Deciding whether a given text admits a k-attractor of size at most
n is NP-complete.

k-attractor : attractor that “catches” all factors of length ≤ k

Can we use combinatorial ideas to find optimal attractors for
particular examples?

France Gheeraert String attractors GREYC - Sém. Algo 5 / 25



Complexity

Proposition (Kempa & Prezza, Fuchs & Whittington)
Let k ≥ 2 and n ∈ N.
Deciding whether a given text admits a k-attractor of size at most
n is NP-complete.

k-attractor : attractor that “catches” all factors of length ≤ k

Can we use combinatorial ideas to find optimal attractors for
particular examples?

France Gheeraert String attractors GREYC - Sém. Algo 5 / 25



Complexity

Proposition (Kempa & Prezza, Fuchs & Whittington)
Let k ≥ 2 and n ∈ N.
Deciding whether a given text admits a k-attractor of size at most
n is NP-complete.

k-attractor : attractor that “catches” all factors of length ≤ k

Can we use combinatorial ideas to find optimal attractors for
particular examples?

France Gheeraert String attractors GREYC - Sém. Algo 5 / 25



Combinatorial operations

Proposition
If Γ is a string attractor for t and ∆ is a string attractor for s, then

1

len(t) + 1 − Γ

is a string attractor for tR (t reversed);
2

Γ ∪ (∆ + len(t)) ∪ {len(t)}

is a string attractor for ts;
3

Γ ∪ {len(t)}

is a string attractor for tp for any prefix p of
ttttt · · · .

Corollary
1 γ∗(tR) = γ∗(t);
2 γ∗(ts) ≤ γ∗(t) + γ∗(s) + 1;
3 γ∗(tp) ≤ γ∗(t) + 1 for every prefix p of tttt · · · .

France Gheeraert String attractors GREYC - Sém. Algo 6 / 25



Combinatorial operations

Proposition
If Γ is a string attractor for t and ∆ is a string attractor for s, then

1

len(t) + 1 − Γ

is a string attractor for tR (t reversed);

2

Γ ∪ (∆ + len(t)) ∪ {len(t)}

is a string attractor for ts;
3

Γ ∪ {len(t)}

is a string attractor for tp for any prefix p of
ttttt · · · .

Corollary
1 γ∗(tR) = γ∗(t);
2 γ∗(ts) ≤ γ∗(t) + γ∗(s) + 1;
3 γ∗(tp) ≤ γ∗(t) + 1 for every prefix p of tttt · · · .

France Gheeraert String attractors GREYC - Sém. Algo 6 / 25



Combinatorial operations

Proposition
If Γ is a string attractor for t and ∆ is a string attractor for s, then

1 len(t) + 1 − Γ is a string attractor for tR (t reversed);

2

Γ ∪ (∆ + len(t)) ∪ {len(t)}

is a string attractor for ts;
3

Γ ∪ {len(t)}

is a string attractor for tp for any prefix p of
ttttt · · · .

Corollary
1 γ∗(tR) = γ∗(t);
2 γ∗(ts) ≤ γ∗(t) + γ∗(s) + 1;
3 γ∗(tp) ≤ γ∗(t) + 1 for every prefix p of tttt · · · .

France Gheeraert String attractors GREYC - Sém. Algo 6 / 25



Combinatorial operations

Proposition
If Γ is a string attractor for t and ∆ is a string attractor for s, then

1 len(t) + 1 − Γ is a string attractor for tR (t reversed);
2

Γ ∪ (∆ + len(t)) ∪ {len(t)}

is a string attractor for ts;

3

Γ ∪ {len(t)}

is a string attractor for tp for any prefix p of
ttttt · · · .

Corollary
1 γ∗(tR) = γ∗(t);
2 γ∗(ts) ≤ γ∗(t) + γ∗(s) + 1;
3 γ∗(tp) ≤ γ∗(t) + 1 for every prefix p of tttt · · · .

France Gheeraert String attractors GREYC - Sém. Algo 6 / 25



Combinatorial operations

Proposition
If Γ is a string attractor for t and ∆ is a string attractor for s, then

1 len(t) + 1 − Γ is a string attractor for tR (t reversed);
2 Γ ∪ (∆ + len(t)) ∪ {len(t)} is a string attractor for ts;

3

Γ ∪ {len(t)}

is a string attractor for tp for any prefix p of
ttttt · · · .

Corollary
1 γ∗(tR) = γ∗(t);
2 γ∗(ts) ≤ γ∗(t) + γ∗(s) + 1;
3 γ∗(tp) ≤ γ∗(t) + 1 for every prefix p of tttt · · · .

France Gheeraert String attractors GREYC - Sém. Algo 6 / 25



Combinatorial operations

Proposition
If Γ is a string attractor for t and ∆ is a string attractor for s, then

1 len(t) + 1 − Γ is a string attractor for tR (t reversed);
2 Γ ∪ (∆ + len(t)) ∪ {len(t)} is a string attractor for ts;
3

Γ ∪ {len(t)}

is a string attractor for tp for any prefix p of
ttttt · · · .

Corollary
1 γ∗(tR) = γ∗(t);
2 γ∗(ts) ≤ γ∗(t) + γ∗(s) + 1;
3 γ∗(tp) ≤ γ∗(t) + 1 for every prefix p of tttt · · · .

France Gheeraert String attractors GREYC - Sém. Algo 6 / 25



Combinatorial operations

Proposition
If Γ is a string attractor for t and ∆ is a string attractor for s, then

1 len(t) + 1 − Γ is a string attractor for tR (t reversed);
2 Γ ∪ (∆ + len(t)) ∪ {len(t)} is a string attractor for ts;
3 Γ ∪ {len(t)} is a string attractor for tp for any prefix p of

ttttt · · · .

Corollary
1 γ∗(tR) = γ∗(t);
2 γ∗(ts) ≤ γ∗(t) + γ∗(s) + 1;
3 γ∗(tp) ≤ γ∗(t) + 1 for every prefix p of tttt · · · .

France Gheeraert String attractors GREYC - Sém. Algo 6 / 25



Combinatorial operations

Proposition
If Γ is a string attractor for t and ∆ is a string attractor for s, then

1 len(t) + 1 − Γ is a string attractor for tR (t reversed);
2 Γ ∪ (∆ + len(t)) ∪ {len(t)} is a string attractor for ts;
3 Γ ∪ {len(t)} is a string attractor for tp for any prefix p of

ttttt · · · .

Corollary
1 γ∗(tR) = γ∗(t);
2 γ∗(ts) ≤ γ∗(t) + γ∗(s) + 1;
3 γ∗(tp) ≤ γ∗(t) + 1 for every prefix p of tttt · · · .

France Gheeraert String attractors GREYC - Sém. Algo 6 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?

No, example:
01110001

⇝ 011100011

• And if s is a prefix of tttt · · · ?

No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1
2γ∗(t).

(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?
No, example:

01110001

⇝ 011100011

• And if s is a prefix of tttt · · · ?

No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1
2γ∗(t).

(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?
No, example:

01110001

⇝ 011100011

• And if s is a prefix of tttt · · · ?

No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1
2γ∗(t).

(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?
No, example:

01110001

⇝ 011100011

• And if s is a prefix of tttt · · · ?

No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1
2γ∗(t).

(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?
No, example:

01110001⇝ 011100011

• And if s is a prefix of tttt · · · ?

No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1
2γ∗(t).

(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?
No, example:

01110001⇝ 011100011

• And if s is a prefix of tttt · · · ?

No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1
2γ∗(t).

(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?
No, example:

01110001⇝ 011100011

• And if s is a prefix of tttt · · · ?

No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1
2γ∗(t).

(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?
No, example:

01110001⇝ 011100011

• And if s is a prefix of tttt · · · ?

No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1
2γ∗(t).

(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Monotonicity

• Do we have γ∗(t) ≤ γ∗(ts)?
No, example:

01110001⇝ 011100011

• And if s is a prefix of tttt · · · ?
No, there are infinitely many texts t s.t. γ∗(tt) ∼ 1

2γ∗(t).
(Mantaci et al.)

France Gheeraert String attractors GREYC - Sém. Algo 7 / 25



Profile function

Definition
Let x ∈ AN.

The (string attractor) profile function of x is

sx : N → N n 7→ γ∗(x [1, n]).

Upper bound:
• sx (n) ≤ n for all n;
• sx (n) ≤ lz(x [1, n]) ∈ O

(
n

log#A(n)

)
.

France Gheeraert String attractors GREYC - Sém. Algo 8 / 25



Profile function

Definition
Let x ∈ AN. The (string attractor) profile function of x is

sx : N → N n 7→ γ∗(x [1, n]).

Upper bound:
• sx (n) ≤ n for all n;
• sx (n) ≤ lz(x [1, n]) ∈ O

(
n

log#A(n)

)
.

France Gheeraert String attractors GREYC - Sém. Algo 8 / 25



Profile function

Definition
Let x ∈ AN. The (string attractor) profile function of x is

sx : N → N n 7→ γ∗(x [1, n]).

Upper bound:
• sx (n) ≤ n for all n;

• sx (n) ≤ lz(x [1, n]) ∈ O
(

n
log#A(n)

)
.

France Gheeraert String attractors GREYC - Sém. Algo 8 / 25



Profile function

Definition
Let x ∈ AN. The (string attractor) profile function of x is

sx : N → N n 7→ γ∗(x [1, n]).

Upper bound:
• sx (n) ≤ n for all n;
• sx (n) ≤ lz(x [1, n])

∈ O
(

n
log#A(n)

)
.

France Gheeraert String attractors GREYC - Sém. Algo 8 / 25



Profile function

Definition
Let x ∈ AN. The (string attractor) profile function of x is

sx : N → N n 7→ γ∗(x [1, n]).

Upper bound:
• sx (n) ≤ n for all n;
• sx (n) ≤ lz(x [1, n]) ∈ O

(
n

log#A(n)

)
.

France Gheeraert String attractors GREYC - Sém. Algo 8 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).

• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0

110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

01

10100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110

100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

01101001

10010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4

• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

01

00101001001 · · ·

0, 01

, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

010

0101001001 · · ·

0, 01, 010

, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

01001

01001001 · · ·

0, 01, 010, 01001

, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

01001010

01001 · · ·

0, 01, 010, 01001, 01001010

, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . .

→
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case

• If x = tttt · · · , then sx (n) ≤ len(t).
• If x = stttt · · · , then sx (n) ≤ len(s) + len(t).

Are there aperiodic sequences with bounded profile function?

• Thue-Morse sequence:

0110100110010110 · · ·

→ sx (n) ≤ 4
• Fibonacci sequence:

0100101001001 · · ·

0, 01, 010, 01001, 01001010, 0100101001001, . . . →
sx (n) ≤ 2

France Gheeraert String attractors GREYC - Sém. Algo 9 / 25



The bounded case (2)

In both examples, every factor appears with linearly bounded gaps.

Proposition
• If every factor appears with linearly bounded gaps, then sx is

bounded. (Schaeffer & Shallit)
• If sx is bounded, then either x is eventually periodic, or the

number of different factors grows linearly. (Restivo, Romana
& Sciortino)

France Gheeraert String attractors GREYC - Sém. Algo 10 / 25



The bounded case (2)

In both examples, every factor appears with linearly bounded gaps.

Proposition
• If every factor appears with linearly bounded gaps, then sx is

bounded. (Schaeffer & Shallit)

• If sx is bounded, then either x is eventually periodic, or the
number of different factors grows linearly. (Restivo, Romana
& Sciortino)

France Gheeraert String attractors GREYC - Sém. Algo 10 / 25



The bounded case (2)

In both examples, every factor appears with linearly bounded gaps.

Proposition
• If every factor appears with linearly bounded gaps, then sx is

bounded. (Schaeffer & Shallit)
• If sx is bounded, then either x is eventually periodic, or the

number of different factors grows linearly. (Restivo, Romana
& Sciortino)

France Gheeraert String attractors GREYC - Sém. Algo 10 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}

, {1, 2}, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}

, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}

, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}

, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}

, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}

, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}

, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}

, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}

, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}

, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}

, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}

, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}

, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}

, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix

• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix
• if new factor, add a “well-chosen” position

• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Fibonacci: first ideas

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {3, 5}, {5, 8}, . . .

• increase the length of the prefix
• if new factor, add a “well-chosen” position
• remove the first position when it becomes redundant

France Gheeraert String attractors GREYC - Sém. Algo 11 / 25



Main result

Let
f0 = 0, f1 = 01, fn+2 = fn+1fn

and Fn = len(fn).

Proposition
Every prefix has a string attractor of the form {Fn, Fn+1}.

We must show that:

1. the positions in {Fi : i ∈ N} are sufficient;
2. Fn becomes redundant with Fn+2;
3. Fn is already redundant when we need position Fn+2.

France Gheeraert String attractors GREYC - Sém. Algo 12 / 25



Main result

Let
f0 = 0, f1 = 01, fn+2 = fn+1fn

and Fn = len(fn).

Proposition
Every prefix has a string attractor of the form {Fn, Fn+1}.

We must show that:

1. the positions in {Fi : i ∈ N} are sufficient;
2. Fn becomes redundant with Fn+2;
3. Fn is already redundant when we need position Fn+2.

France Gheeraert String attractors GREYC - Sém. Algo 12 / 25



Main result

Let
f0 = 0, f1 = 01, fn+2 = fn+1fn

and Fn = len(fn).

Proposition
Every prefix has a string attractor of the form {Fn, Fn+1}.

We must show that:

1. the positions in {Fi : i ∈ N} are sufficient;

2. Fn becomes redundant with Fn+2;
3. Fn is already redundant when we need position Fn+2.

France Gheeraert String attractors GREYC - Sém. Algo 12 / 25



Main result

Let
f0 = 0, f1 = 01, fn+2 = fn+1fn

and Fn = len(fn).

Proposition
Every prefix has a string attractor of the form {Fn, Fn+1}.

We must show that:

1. the positions in {Fi : i ∈ N} are sufficient;
2. Fn becomes redundant with Fn+2;

3. Fn is already redundant when we need position Fn+2.

France Gheeraert String attractors GREYC - Sém. Algo 12 / 25



Main result

Let
f0 = 0, f1 = 01, fn+2 = fn+1fn

and Fn = len(fn).

Proposition
Every prefix has a string attractor of the form {Fn, Fn+1}.

We must show that:

1. the positions in {Fi : i ∈ N} are sufficient;
2. Fn becomes redundant with Fn+2;
3. Fn is already redundant when we need position Fn+2.

France Gheeraert String attractors GREYC - Sém. Algo 12 / 25



Step 1.

Proof that the positions in {Fi : i ∈ N} are sufficient:

• already checked for the small prefixes
• assume that Γ ⊆ {Fi : i ∈ N} is a s.a. of x [1, Fn] = fn, n ≥ 2
• fn−1 is a prefix of fn
• so Γ ∪ {Fn} is a s.a. of fnp for every prefix p of fn−1

• hence, Γ ∪ {Fn} is a s.a. of x [1, k] for any Fn ≤ k ≤ Fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 13 / 25



Step 1.

Proof that the positions in {Fi : i ∈ N} are sufficient:

• already checked for the small prefixes

• assume that Γ ⊆ {Fi : i ∈ N} is a s.a. of x [1, Fn] = fn, n ≥ 2
• fn−1 is a prefix of fn
• so Γ ∪ {Fn} is a s.a. of fnp for every prefix p of fn−1

• hence, Γ ∪ {Fn} is a s.a. of x [1, k] for any Fn ≤ k ≤ Fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 13 / 25



Step 1.

Proof that the positions in {Fi : i ∈ N} are sufficient:

• already checked for the small prefixes
• assume that Γ ⊆ {Fi : i ∈ N} is a s.a. of x [1, Fn] = fn, n ≥ 2

• fn−1 is a prefix of fn
• so Γ ∪ {Fn} is a s.a. of fnp for every prefix p of fn−1

• hence, Γ ∪ {Fn} is a s.a. of x [1, k] for any Fn ≤ k ≤ Fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 13 / 25



Step 1.

Proof that the positions in {Fi : i ∈ N} are sufficient:

• already checked for the small prefixes
• assume that Γ ⊆ {Fi : i ∈ N} is a s.a. of x [1, Fn] = fn, n ≥ 2
• fn−1 is a prefix of fn

• so Γ ∪ {Fn} is a s.a. of fnp for every prefix p of fn−1

• hence, Γ ∪ {Fn} is a s.a. of x [1, k] for any Fn ≤ k ≤ Fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 13 / 25



Step 1.

Proof that the positions in {Fi : i ∈ N} are sufficient:

• already checked for the small prefixes
• assume that Γ ⊆ {Fi : i ∈ N} is a s.a. of x [1, Fn] = fn, n ≥ 2
• fn−1 is a prefix of fn
• so Γ ∪ {Fn} is a s.a. of fnp for every prefix p of fn−1

• hence, Γ ∪ {Fn} is a s.a. of x [1, k] for any Fn ≤ k ≤ Fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 13 / 25



Step 1.

Proof that the positions in {Fi : i ∈ N} are sufficient:

• already checked for the small prefixes
• assume that Γ ⊆ {Fi : i ∈ N} is a s.a. of x [1, Fn] = fn, n ≥ 2
• fn−1 is a prefix of fn
• so Γ ∪ {Fn} is a s.a. of fnp for every prefix p of fn−1

• hence, Γ ∪ {Fn} is a s.a. of x [1, k] for any Fn ≤ k ≤ Fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 13 / 25



Step 1.

Proof that the positions in {Fi : i ∈ N} are sufficient:

• already checked for the small prefixes
• assume that Γ ⊆ {Fi : i ∈ N} is a s.a. of x [1, Fn] = fn, n ≥ 2
• fn−1 is a prefix of fn
• so Γ ∪ {Fn} is a s.a. of fnp for every prefix p of fn−1

• hence, Γ ∪ {Fn} is a s.a. of x [1, k] for any Fn ≤ k ≤ Fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 13 / 25



Step 2.

Proof that Fn becomes redundant with Fn+2:

0100101001001 · · ·

• fn is a suffix of fn+2;
• fn+2 is followed by x [Fn + 1, Fn+1 − 1] in x ;

• x [Fn + 1, Fn+1 − 1] is a prefix of fn;
• fn+2 is followed by fn in x ;

3

France Gheeraert String attractors GREYC - Sém. Algo 14 / 25



Step 2.

Proof that Fn becomes redundant with Fn+2:

0100101001001 · · ·

• fn is a suffix of fn+2;
• fn+2 is followed by x [Fn + 1, Fn+1 − 1] in x ;

• x [Fn + 1, Fn+1 − 1] is a prefix of fn;
• fn+2 is followed by fn in x ;

3

France Gheeraert String attractors GREYC - Sém. Algo 14 / 25



Step 2.

Proof that Fn becomes redundant with Fn+2:

0100101001001 · · ·

• fn is a suffix of fn+2;

• fn+2 is followed by x [Fn + 1, Fn+1 − 1] in x ;

• x [Fn + 1, Fn+1 − 1] is a prefix of fn;
• fn+2 is followed by fn in x ;

3

France Gheeraert String attractors GREYC - Sém. Algo 14 / 25



Step 2.

Proof that Fn becomes redundant with Fn+2:

0100101001001 · · ·

• fn is a suffix of fn+2;
• fn+2 is followed by x [Fn + 1, Fn+1 − 1] in x ;

• x [Fn + 1, Fn+1 − 1] is a prefix of fn;
• fn+2 is followed by fn in x ;

3

France Gheeraert String attractors GREYC - Sém. Algo 14 / 25



Step 2.

Proof that Fn becomes redundant with Fn+2:

0100101001001 · · ·

• fn is a suffix of fn+2;
• fn+2 is followed by x [Fn + 1, Fn+1 − 1] in x ;

• x [Fn + 1, Fn+1 − 1] is a prefix of fn;

• fn+2 is followed by fn in x ;

3

France Gheeraert String attractors GREYC - Sém. Algo 14 / 25



Step 2.

Proof that Fn becomes redundant with Fn+2:

0100101001001 · · ·

• fn is a suffix of fn+2;
• fn+2 is followed by x [Fn + 1, Fn+1 − 1] in x ;

• x [Fn + 1, Fn+1 − 1] is a prefix of fn;
• fn+2 is followed by fn in x ;

3

France Gheeraert String attractors GREYC - Sém. Algo 14 / 25



Step 2.

Proof that Fn becomes redundant with Fn+2:

0100101001001 · · ·

• fn is a suffix of fn+2;
• fn+2 is followed by x [Fn + 1, Fn+1 − 1] in x ;

• x [Fn + 1, Fn+1 − 1] is a prefix of fn;
• fn+2 is followed by fn in x ;

3

France Gheeraert String attractors GREYC - Sém. Algo 14 / 25



Step 3.

Proof that Fn is redundant when we need Fn+2:

0100101001001 · · ·

• Fn is redundant starting with x [1, Fn+2 + Fn+1 − 1 − Fn]
• x [Fn+1 + 1, Fn+2 + Fn+1 − Fn − 2] is a prefix of fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 15 / 25



Step 3.

Proof that Fn is redundant when we need Fn+2:

0100101001001 · · ·

• Fn is redundant starting with x [1, Fn+2 + Fn+1 − 1 − Fn]
• x [Fn+1 + 1, Fn+2 + Fn+1 − Fn − 2] is a prefix of fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 15 / 25



Step 3.

Proof that Fn is redundant when we need Fn+2:

0100101001001 · · ·

• Fn is redundant starting with x [1, Fn+2 + Fn+1 − 1 − Fn]

• x [Fn+1 + 1, Fn+2 + Fn+1 − Fn − 2] is a prefix of fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 15 / 25



Step 3.

Proof that Fn is redundant when we need Fn+2:

0100101001001 · · ·

• Fn is redundant starting with x [1, Fn+2 + Fn+1 − 1 − Fn]
• x [Fn+1 + 1, Fn+2 + Fn+1 − Fn − 2] is a prefix of fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 15 / 25



Step 3.

Proof that Fn is redundant when we need Fn+2:

0100101001001 · · ·

• Fn is redundant starting with x [1, Fn+2 + Fn+1 − 1 − Fn]
• x [Fn+1 + 1, Fn+2 + Fn+1 − Fn − 2] is a prefix of fn+1

3

France Gheeraert String attractors GREYC - Sém. Algo 15 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.

More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Tribonacci sequence

t0 = 0, t1 = 01, t2 = 0102, tn+3 = tn+2tn+1tn

010201001020101020100102 · · ·

Proposition (Cassaigne et al.)
Every prefix has a s.a. made of (at most) 3 consecutive Tribonacci
numbers.
More generally, if x = limi→∞ ui with

ui =
{

ui−1ui−2 · · · u0 i if i < k,

ui−1ui−2 · · · ui−k if i ≥ k,

then every prefix of x has a s.a. made of (at most) k consecutive
elements of {len(ui) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 16 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0

7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01

7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010

7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001

7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0

0 7→ 01
7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0

7→ 01
7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102

7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010

7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Transition to substitutive sequences
Consider the substitutions

φ11 :
{

0 7→ 01,

1 7→ 0,

0 7→ 01
7→ 010
7→ 01001
7→ 01001010

Fibonacci!

φ111 :


0 7→ 01,

1 7→ 02,

2 7→ 0
0 7→ 01

7→ 0102
7→ 0102010
7→ 0102010010201

Tribonacci!

Proposition (Cassaigne et al.)
If x = limi→∞ φi

1k (0), then every prefix of x has a s.a. made of (at
most) k consecutive elements of {len(φi

1k (0)) : i ∈ N}.

France Gheeraert String attractors GREYC - Sém. Algo 17 / 25



Generalizing

For some parameters c0, . . . , ck−1 ∈ N with c0, ck−1 ≥ 1, we define

φc0···ck−1 :


0 7→ 0c01
1 7→ 0c12
. . .

k − 1 7→ 0ck−1

and
un = φn

c0···ck−1(0), Un = len(un).

Does every prefix of limi φi
c0···ck−1(0) have a s.a. made of (at most)

k consecutive Un’s?

France Gheeraert String attractors GREYC - Sém. Algo 18 / 25



Generalizing

For some parameters c0, . . . , ck−1 ∈ N with c0, ck−1 ≥ 1, we define

φc0···ck−1 :


0 7→ 0c01
1 7→ 0c12
. . .

k − 1 7→ 0ck−1

and
un = φn

c0···ck−1(0), Un = len(un).

Does every prefix of limi φi
c0···ck−1(0) have a s.a. made of (at most)

k consecutive Un’s?

France Gheeraert String attractors GREYC - Sém. Algo 18 / 25



Answer
Proposition (G., Romana & Stipulanti)
Let x = limi φi

c0···ck−1(0)
• If there exists j such that

cj · · · ck−2(ck−1 − 1)c0 · · · cj−1 > c0 · · · ck−2(ck−1 − 1), then
there are prefixes of x having no s.a. included in {Ui : i ∈ N}.
Step 1. fails

• Otherwise, every prefix of x has a s.a. made of (at most)
k + 1 consecutive Un’s. Steps 1. and 2. succeed

• Moreover, if ck−1 = 1 and cj · · · ck−2c0 · · · cj−1 ≤ c0 · · · ck−2
for every j, then every prefix of x has a s.a. made of (at most)
k consecutive Un’s. Step 3. succeeds

Proposition (Dvoraková & Moravcová)
If cj · · · ck−2(ck−1 − 1)c0 · · · cj−1 ≤ c0 · · · ck−2(ck−1 − 1) for every
j, then every prefix of x has a s.a. of size (at most) k.

France Gheeraert String attractors GREYC - Sém. Algo 19 / 25



Answer
Proposition (G., Romana & Stipulanti)
Let x = limi φi

c0···ck−1(0)
• If there exists j such that

cj · · · ck−2(ck−1 − 1)c0 · · · cj−1 > c0 · · · ck−2(ck−1 − 1), then
there are prefixes of x having no s.a. included in {Ui : i ∈ N}.
Step 1. fails

• Otherwise, every prefix of x has a s.a. made of (at most)
k + 1 consecutive Un’s. Steps 1. and 2. succeed

• Moreover, if ck−1 = 1 and cj · · · ck−2c0 · · · cj−1 ≤ c0 · · · ck−2
for every j, then every prefix of x has a s.a. made of (at most)
k consecutive Un’s. Step 3. succeeds

Proposition (Dvoraková & Moravcová)
If cj · · · ck−2(ck−1 − 1)c0 · · · cj−1 ≤ c0 · · · ck−2(ck−1 − 1) for every
j, then every prefix of x has a s.a. of size (at most) k.

France Gheeraert String attractors GREYC - Sém. Algo 19 / 25



Answer
Proposition (G., Romana & Stipulanti)
Let x = limi φi

c0···ck−1(0)
• If there exists j such that

cj · · · ck−2(ck−1 − 1)c0 · · · cj−1 > c0 · · · ck−2(ck−1 − 1), then
there are prefixes of x having no s.a. included in {Ui : i ∈ N}.
Step 1. fails

• Otherwise, every prefix of x has a s.a. made of (at most)
k + 1 consecutive Un’s. Steps 1. and 2. succeed

• Moreover, if ck−1 = 1 and cj · · · ck−2c0 · · · cj−1 ≤ c0 · · · ck−2
for every j, then every prefix of x has a s.a. made of (at most)
k consecutive Un’s. Step 3. succeeds

Proposition (Dvoraková & Moravcová)
If cj · · · ck−2(ck−1 − 1)c0 · · · cj−1 ≤ c0 · · · ck−2(ck−1 − 1) for every
j, then every prefix of x has a s.a. of size (at most) k.

France Gheeraert String attractors GREYC - Sém. Algo 19 / 25



Answer
Proposition (G., Romana & Stipulanti)
Let x = limi φi

c0···ck−1(0)
• If there exists j such that

cj · · · ck−2(ck−1 − 1)c0 · · · cj−1 > c0 · · · ck−2(ck−1 − 1), then
there are prefixes of x having no s.a. included in {Ui : i ∈ N}.
Step 1. fails

• Otherwise, every prefix of x has a s.a. made of (at most)
k + 1 consecutive Un’s. Steps 1. and 2. succeed

• Moreover, if ck−1 = 1 and cj · · · ck−2c0 · · · cj−1 ≤ c0 · · · ck−2
for every j, then every prefix of x has a s.a. made of (at most)
k consecutive Un’s. Step 3. succeeds

Proposition (Dvoraková & Moravcová)
If cj · · · ck−2(ck−1 − 1)c0 · · · cj−1 ≤ c0 · · · ck−2(ck−1 − 1) for every
j, then every prefix of x has a s.a. of size (at most) k.

France Gheeraert String attractors GREYC - Sém. Algo 19 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}

, {1, 2}, {2, 3}, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}

, {2, 3}, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}

, {2, 3}, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}

, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}

, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}

, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}

, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}

, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}

, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}

, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Other string attractors

Construction of the string attractors:

0100101001001 · · ·

String attractors:

{1}, {1, 2}, {2, 3}, {4, 5}, {7, 8}, . . .

France Gheeraert String attractors GREYC - Sém. Algo 20 / 25



Alternative construction of the sequence

0

010
010010
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
0

10
010010
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
01

0
010010
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010

010010
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010

010
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
0100

10
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010

01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010
010010

10010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010
0100101

0010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010
01001010010

0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010
01001010010
01001010010

01010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010
01001010010
010010100100

1010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Alternative construction of the sequence

0
010
010010
01001010010
0100101001001010010
· · ·

Proposition (Restivo, Romana & Sciortino)
Every prefix has a string attractor made of 2 consecutive positions.

Fibonacci is the characteristic Sturmian sequence with directive
sequence 010101 · · ·.

France Gheeraert String attractors GREYC - Sém. Algo 21 / 25



Sturmian sequences

Take a line with irrationnal slope,

• intersections with the grid
(billiard)

• approximation by grid lines

you get a binary sequence called Sturmian.

If the intercept is zero, it is characteristic Sturmian.

France Gheeraert String attractors GREYC - Sém. Algo 22 / 25



Sturmian sequences

Take a line with irrationnal slope,

• intersections with the grid
(billiard)

• approximation by grid lines

you get a binary sequence called Sturmian.

If the intercept is zero, it is characteristic Sturmian.

France Gheeraert String attractors GREYC - Sém. Algo 22 / 25



Sturmian sequences

Take a line with irrationnal slope,

• intersections with the grid
(billiard)

• approximation by grid lines

you get a binary sequence called Sturmian.

If the intercept is zero, it is characteristic Sturmian.

France Gheeraert String attractors GREYC - Sém. Algo 22 / 25



Sturmian sequences

Take a line with irrationnal slope,

• intersections with the grid
(billiard)

• approximation by grid lines

you get a binary sequence called Sturmian.

If the intercept is zero, it is characteristic Sturmian.

France Gheeraert String attractors GREYC - Sém. Algo 22 / 25



Sturmian sequences

Take a line with irrationnal slope,

• intersections with the grid
(billiard)

• approximation by grid lines

you get a binary sequence called Sturmian.

If the intercept is zero, it is characteristic Sturmian.

France Gheeraert String attractors GREYC - Sém. Algo 22 / 25



Sturmian sequences

Take a line with irrationnal slope,

• intersections with the grid
(billiard)

• approximation by grid lines

you get a binary sequence called Sturmian.

If the intercept is zero, it is characteristic Sturmian.

France Gheeraert String attractors GREYC - Sém. Algo 22 / 25



Sturmian sequences and string attractors

Proposition (de Luca)
Characteristic Sturmian sequences are obtained by iterated
palindromic closure for a directed sequence with 0’s and 1’s
(infinitely many of each).

Proposition (Restivo, Romana & Sciortino)
1 If x is a characteristic Sturmian sequence, then every prefix

has a string attractor made of 2 consecutive positions.

2 If x is a Sturmian sequence, then infinitely many prefixes have
a string attractor made of 2 consecutive positions.

What about the converse?

France Gheeraert String attractors GREYC - Sém. Algo 23 / 25



Sturmian sequences and string attractors

Proposition (de Luca)
Characteristic Sturmian sequences are obtained by iterated
palindromic closure for a directed sequence with 0’s and 1’s
(infinitely many of each).

Proposition (Restivo, Romana & Sciortino)
1 If x is a characteristic Sturmian sequence, then every prefix

has a string attractor made of 2 consecutive positions.

2 If x is a Sturmian sequence, then infinitely many prefixes have
a string attractor made of 2 consecutive positions.

What about the converse?

France Gheeraert String attractors GREYC - Sém. Algo 23 / 25



Sturmian sequences and string attractors

Proposition (de Luca)
Characteristic Sturmian sequences are obtained by iterated
palindromic closure for a directed sequence with 0’s and 1’s
(infinitely many of each).

Proposition (Restivo, Romana & Sciortino)
1 If x is a characteristic Sturmian sequence, then every prefix

has a string attractor made of 2 consecutive positions.
2 If x is a Sturmian sequence, then infinitely many prefixes have

a string attractor made of 2 consecutive positions.

What about the converse?

France Gheeraert String attractors GREYC - Sém. Algo 23 / 25



Sturmian sequences and string attractors

Proposition (de Luca)
Characteristic Sturmian sequences are obtained by iterated
palindromic closure for a directed sequence with 0’s and 1’s
(infinitely many of each).

Proposition (Restivo, Romana & Sciortino)
1 If x is a characteristic Sturmian sequence, then every prefix

has a string attractor made of 2 consecutive positions.
2 If x is a Sturmian sequence, then infinitely many prefixes have

a string attractor made of 2 consecutive positions.

What about the converse?

France Gheeraert String attractors GREYC - Sém. Algo 23 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.

• Sturmian sequences are exactly the sequences such that
px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.
• Sturmian sequences are exactly the sequences such that

px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Sturmian sequences and string attractors (2)

→ at most n + 1 different factors of length n.

Theorem (Morse & Hedlund)
Let px (n) denote the number of different length-n factors.

• If x is aperiodic then px (n) ≥ n + 1 for all n.
• Sturmian sequences are exactly the sequences such that

px (n) = n + 1 for all n.

Proposition (Restivo, Romana & Sciortino)
A sequence is Sturmian if and only if it is aperiodic and infinitely
many prefixes have a string attractor made of 2 consecutive
positions.

France Gheeraert String attractors GREYC - Sém. Algo 24 / 25



Conclusion and open questions

Summary:
• combinatorial object related to text compression

• two ways of building string attractors for the Fibonacci
sequence

using the substitutive structure
using the palindromic structure

Open questions:
• Can we characterize the sequences such that sx is bounded?
• Can we describe string attractors for other substitutive

sequences?
• Can we characterize other well-known families of sequences

through string attractors?

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25



Conclusion and open questions

Summary:
• combinatorial object related to text compression
• two ways of building string attractors for the Fibonacci

sequence

using the substitutive structure
using the palindromic structure

Open questions:
• Can we characterize the sequences such that sx is bounded?
• Can we describe string attractors for other substitutive

sequences?
• Can we characterize other well-known families of sequences

through string attractors?

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25



Conclusion and open questions

Summary:
• combinatorial object related to text compression
• two ways of building string attractors for the Fibonacci

sequence
using the substitutive structure

using the palindromic structure

Open questions:
• Can we characterize the sequences such that sx is bounded?
• Can we describe string attractors for other substitutive

sequences?
• Can we characterize other well-known families of sequences

through string attractors?

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25



Conclusion and open questions

Summary:
• combinatorial object related to text compression
• two ways of building string attractors for the Fibonacci

sequence
using the substitutive structure
using the palindromic structure

Open questions:
• Can we characterize the sequences such that sx is bounded?
• Can we describe string attractors for other substitutive

sequences?
• Can we characterize other well-known families of sequences

through string attractors?

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25



Conclusion and open questions

Summary:
• combinatorial object related to text compression
• two ways of building string attractors for the Fibonacci

sequence
using the substitutive structure
using the palindromic structure

Open questions:

• Can we characterize the sequences such that sx is bounded?
• Can we describe string attractors for other substitutive

sequences?
• Can we characterize other well-known families of sequences

through string attractors?

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25



Conclusion and open questions

Summary:
• combinatorial object related to text compression
• two ways of building string attractors for the Fibonacci

sequence
using the substitutive structure
using the palindromic structure

Open questions:
• Can we characterize the sequences such that sx is bounded?

• Can we describe string attractors for other substitutive
sequences?

• Can we characterize other well-known families of sequences
through string attractors?

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25



Conclusion and open questions

Summary:
• combinatorial object related to text compression
• two ways of building string attractors for the Fibonacci

sequence
using the substitutive structure
using the palindromic structure

Open questions:
• Can we characterize the sequences such that sx is bounded?
• Can we describe string attractors for other substitutive

sequences?

• Can we characterize other well-known families of sequences
through string attractors?

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25



Conclusion and open questions

Summary:
• combinatorial object related to text compression
• two ways of building string attractors for the Fibonacci

sequence
using the substitutive structure
using the palindromic structure

Open questions:
• Can we characterize the sequences such that sx is bounded?
• Can we describe string attractors for other substitutive

sequences?
• Can we characterize other well-known families of sequences

through string attractors?

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25



The end

Thank you for listening!

France Gheeraert String attractors GREYC - Sém. Algo 25 / 25


